The Secrets of Non-Blind Poisson Deconvolution

6 Sep 2023  ·  Abhiram Gnanasambandam, Yash Sanghvi, Stanley H. Chan ·

Non-blind image deconvolution has been studied for several decades but most of the existing work focuses on blur instead of noise. In photon-limited conditions, however, the excessive amount of shot noise makes traditional deconvolution algorithms fail. In searching for reasons why these methods fail, we present a systematic analysis of the Poisson non-blind deconvolution algorithms reported in the literature, covering both classical and deep learning methods. We compile a list of five "secrets" highlighting the do's and don'ts when designing algorithms. Based on this analysis, we build a proof-of-concept method by combining the five secrets. We find that the new method performs on par with some of the latest methods while outperforming some older ones.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods