Theoretical Foundation of Co-Training and Disagreement-Based Algorithms

15 Aug 2017 Wei Wang Zhi-Hua Zhou

Disagreement-based approaches generate multiple classifiers and exploit the disagreement among them with unlabeled data to improve learning performance. Co-training is a representative paradigm of them, which trains two classifiers separately on two sufficient and redundant views; while for the applications where there is only one view, several successful variants of co-training with two different classifiers on single-view data instead of two views have been proposed... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet