Theoretical Foundations of t-SNE for Visualizing High-Dimensional Clustered Data

16 May 2021  ·  T. Tony Cai, Rong Ma ·

This paper investigates the theoretical foundations of the t-distributed stochastic neighbor embedding (t-SNE) algorithm, a popular nonlinear dimension reduction and data visualization method. A novel theoretical framework for the analysis of t-SNE based on the gradient descent approach is presented. For the early exaggeration stage of t-SNE, we show its asymptotic equivalence to power iterations based on the underlying graph Laplacian, characterize its limiting behavior, and uncover its deep connection to Laplacian spectral clustering, and fundamental principles including early stopping as implicit regularization. The results explain the intrinsic mechanism and the empirical benefits of such a computational strategy. For the embedding stage of t-SNE, we characterize the kinematics of the low-dimensional map throughout the iterations, and identify an amplification phase, featuring the intercluster repulsion and the expansive behavior of the low-dimensional map, and a stabilization phase. The general theory explains the fast convergence rate and the exceptional empirical performance of t-SNE for visualizing clustered data, brings forth interpretations of the t-SNE visualizations, and provides theoretical guidance for applying t-SNE and selecting its tuning parameters in various applications.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.