Theoretical guarantees on the best-of-n alignment policy

A simple and effective method for the alignment of generative models is the best-of-$n$ policy, where $n$ samples are drawn from a base policy, and ranked based on a reward function, and the highest ranking one is selected. A commonly used analytical expression in the literature claims that the KL divergence between the best-of-$n$ policy and the base policy is equal to $\log (n) - (n-1)/n.$ We disprove the validity of this claim, and show that it is an upper bound on the actual KL divergence. We also explore the tightness of this upper bound in different regimes. Finally, we propose a new estimator for the KL divergence and empirically show that it provides a tight approximation through a few examples.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods