Theory of matching pursuit

NeurIPS 2008  ·  Zakria Hussain, John S. Shawe-Taylor ·

We analyse matching pursuit for kernel principal components analysis by proving that the sparse subspace it produces is a sample compression scheme. We show that this bound is tighter than the KPCA bound of Shawe-Taylor et al swck-05 and highly predictive of the size of the subspace needed to capture most of the variance in the data. We analyse a second matching pursuit algorithm called kernel matching pursuit (KMP) which does not correspond to a sample compression scheme. However, we give a novel bound that views the choice of subspace of the KMP algorithm as a compression scheme and hence provide a VC bound to upper bound its future loss. Finally we describe how the same bound can be applied to other matching pursuit related algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here