THU\_NGN at SemEval-2018 Task 2: Residual CNN-LSTM Network with Attention for English Emoji Prediction

Emojis are widely used by social media and social network users when posting their messages. It is important to study the relationships between messages and emojis... Thus, in SemEval-2018 Task 2 an interesting and challenging task is proposed, i.e., predicting which emojis are evoked by text-based tweets. We propose a residual CNN-LSTM with attention (\textbf{RCLA}) model for this task. Our model combines CNN and LSTM layers to capture both local and long-range contextual information for tweet representation. In addition, attention mechanism is used to select important components. Besides, residual connection is applied to CNN layers to facilitate the training of neural networks. We also incorporated additional features such as POS tags and sentiment features extracted from lexicons. Our model achieved 30.25{\%} macro-averaged F-score in the first subtask (i.e., emoji prediction in English), ranking 7th out of 48 participants. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods