Tight Lower Bounds for Locally Differentially Private Selection

7 Feb 2018 Jonathan Ullman

We prove a tight lower bound (up to constant factors) on the sample complexity of any non-interactive local differentially private protocol for optimizing a linear function over the simplex. This lower bound also implies a tight lower bound (again, up to constant factors) on the sample complexity of any non-interactive local differentially private protocol implementing the exponential mechanism... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet