Tight Prediction Intervals Using Expanded Interval Minimization

28 Jun 2018  ·  Dongqi Su, Ying Yin Ting, Jason Ansel ·

Prediction intervals are a valuable way of quantifying uncertainty in regression problems. Good prediction intervals should be both correct, containing the actual value between the lower and upper bound at least a target percentage of the time; and tight, having a small mean width of the bounds. Many prior techniques for generating prediction intervals make assumptions on the distribution of error, which causes them to work poorly for problems with asymmetric distributions. This paper presents Expanded Interval Minimization (EIM), a novel loss function for generating prediction intervals using neural networks. This loss function uses minibatch statistics to estimate the coverage and optimize the width of the prediction intervals. It does not make the same assumptions on the distributions of data and error as prior work. We compare to three published techniques and show EIM produces on average 1.37x tighter prediction intervals and in the worst case 1.06x tighter intervals across two large real-world datasets and varying coverage levels.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here