Time of Arrival Error Estimation for Positioning Using Convolutional Neural Networks

Wireless high-accuracy positioning has recently attracted growing research interest due to diversified nature of applications such as industrial asset tracking, autonomous driving, process automation, and many more. However, obtaining a highly accurate location information is hampered by challenges due to the radio environment. A major source of error for time-based positioning methods is inaccurate time-of-arrival (ToA) or range estimation. Existing machine learning-based solutions to mitigate such errors rely on propagation environment classification hindered by a low number of classes, employ a set of features representing channel measurements only to a limited extent, or account for only device-specific proprietary methods of ToA estimation. In this paper, we propose convolutional neural networks (CNNs) to estimate and mitigate the errors of a variety of ToA estimation methods utilizing channel impulse responses (CIRs). Based on real-world measurements from two independent campaigns, the proposed method yields significant improvements in ranging accuracy (up to 37%) of the state-of-the-art ToA estimators, often eliminating the need of optimizing the underlying conventional methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here