To Be or Not To Be a Verbal Multiword Expression: A Quest for Discriminating Features

Automatic identification of mutiword expressions (MWEs) is a pre-requisite for semantically-oriented downstream applications. This task is challenging because MWEs, especially verbal ones (VMWEs), exhibit surface variability. However, this variability is usually more restricted than in regular (non-VMWE) constructions, which leads to various variability profiles. We use this fact to determine the optimal set of features which could be used in a supervised classification setting to solve a subproblem of VMWE identification: the identification of occurrences of previously seen VMWEs. Surprisingly, a simple custom frequency-based feature selection method proves more efficient than other standard methods such as Chi-squared test, information gain or decision trees. An SVM classifier using the optimal set of only 6 features outperforms the best systems from a recent shared task on the French seen data.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.