Topology Reconstruction of Tree-Like Structure in Images via Structural Similarity Measure and Dominant Set Clustering

The reconstruction and analysis of tree-like topological structures in the biomedical images is crucial for biologists and surgeons to understand biomedical conditions and plan surgical procedures. The underlying tree-structure topology reveals how different curvilinear components are anatomically connected to each other. Existing automated topology reconstruction methods have great difficulty in identifying the connectivity when two or more curvilinear components cross or bifurcate, due to their projection ambiguity, imaging noise and low contrast. In this paper, we propose a novel curvilinear structural similarity measure to guide a dominant-set clustering approach to address this indispensable issue. The novel similarity measure takes into account both intensity and geometric properties in representing the curvilinear structure locally and globally, and group curvilinear objects at crossover points into different connected branches by dominant-set clustering. The proposed method is applicable to different imaging modalities, and quantitative and qualitative results on retinal vessel, plant root, and neuronal network datasets show that our methodology is capable of advancing the current state-of-the-art techniques.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here