Toward a Scalable Upper Bound for a CVaR-LQ Problem

3 Mar 2021  ·  Margaret P. Chapman, Laurent Lessard ·

We study a linear-quadratic, optimal control problem on a discrete, finite time horizon with distributional ambiguity, in which the cost is assessed via Conditional Value-at-Risk (CVaR). We take steps toward deriving a scalable dynamic programming approach to upper-bound the optimal value function for this problem. This dynamic program yields a novel, tunable risk-averse control policy, which we compare to existing state-of-the-art methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here