Loss landscapes and optimization in over-parameterized non-linear systems and neural networks

29 Feb 2020  ·  Chaoyue Liu, Libin Zhu, Mikhail Belkin ·

The success of deep learning is due, to a large extent, to the remarkable effectiveness of gradient-based optimization methods applied to large neural networks. The purpose of this work is to propose a modern view and a general mathematical framework for loss landscapes and efficient optimization in over-parameterized machine learning models and systems of non-linear equations, a setting that includes over-parameterized deep neural networks... Our starting observation is that optimization problems corresponding to such systems are generally not convex, even locally. We argue that instead they satisfy PL$^*$, a variant of the Polyak-Lojasiewicz condition on most (but not all) of the parameter space, which guarantees both the existence of solutions and efficient optimization by (stochastic) gradient descent (SGD/GD). The PL$^*$ condition of these systems is closely related to the condition number of the tangent kernel associated to a non-linear system showing how a PL$^*$-based non-linear theory parallels classical analyses of over-parameterized linear equations. We show that wide neural networks satisfy the PL$^*$ condition, which explains the (S)GD convergence to a global minimum. Finally we propose a relaxation of the PL$^*$ condition applicable to "almost" over-parameterized systems. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.