Toward Bayesian Synchronous Tree Substitution Grammars for Sentence Planning

Developing conventional natural language generation systems requires extensive attention from human experts in order to craft complex sets of sentence planning rules. We propose a Bayesian nonparametric approach to learn sentence planning rules by inducing synchronous tree substitution grammars for pairs of text plans and morphosyntactically-specified dependency trees... Our system is able to learn rules which can be used to generate novel texts after training on small datasets. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here