Toward Robust Long Range Policy Transfer

4 Mar 2021  ·  Wei-Cheng Tseng, Jin-Siang Lin, Yao-Min Feng, Min Sun ·

Humans can master a new task within a few trials by drawing upon skills acquired through prior experience. To mimic this capability, hierarchical models combining primitive policies learned from prior tasks have been proposed. However, these methods fall short comparing to the human's range of transferability. We propose a method, which leverages the hierarchical structure to train the combination function and adapt the set of diverse primitive polices alternatively, to efficiently produce a range of complex behaviors on challenging new tasks. We also design two regularization terms to improve the diversity and utilization rate of the primitives in the pre-training phase. We demonstrate that our method outperforms other recent policy transfer methods by combining and adapting these reusable primitives in tasks with continuous action space. The experiment results further show that our approach provides a broader transferring range. The ablation study also shows the regularization terms are critical for long range policy transfer. Finally, we show that our method consistently outperforms other methods when the quality of the primitives varies.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here