Towards a Dynamic Composability Approach for using Heterogeneous Systems in Remote Sensing

Influenced by the advances in data and computing, the scientific practice increasingly involves machine learning and artificial intelligence driven methods which requires specialized capabilities at the system-, science- and service-level in addition to the conventional large-capacity supercomputing approaches. The latest distributed architectures built around the composability of data-centric applications led to the emergence of a new ecosystem for container coordination and integration. However, there is still a divide between the application development pipelines of existing supercomputing environments, and these new dynamic environments that disaggregate fluid resource pools through accessible, portable and re-programmable interfaces. New approaches for dynamic composability of heterogeneous systems are needed to further advance the data-driven scientific practice for the purpose of more efficient computing and usable tools for specific scientific domains. In this paper, we present a novel approach for using composable systems in the intersection between scientific computing, artificial intelligence (AI), and remote sensing domain. We describe the architecture of a first working example of a composable infrastructure that federates Expanse, an NSF-funded supercomputer, with Nautilus, a Kubernetes-based GPU geo-distributed cluster. We also summarize a case study in wildfire modeling, that demonstrates the application of this new infrastructure in scientific workflows: a composed system that bridges the insights from edge sensing, AI and computing capabilities with a physics-driven simulation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here