Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't

22 Sep 2020  ·  Weinan E, Chao Ma, Stephan Wojtowytsch, Lei Wu ·

The purpose of this article is to review the achievements made in the last few years towards the understanding of the reasons behind the success and subtleties of neural network-based machine learning. In the tradition of good old applied mathematics, we will not only give attention to rigorous mathematical results, but also the insight we have gained from careful numerical experiments as well as the analysis of simplified models. Along the way, we also list the open problems which we believe to be the most important topics for further study. This is not a complete overview over this quickly moving field, but we hope to provide a perspective which may be helpful especially to new researchers in the area.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here