Towards a Metric for Automated Conversational Dialogue System Evaluation and Improvement

WS 2019  ·  Jan Deriu, Mark Cieliebak ·

We present "AutoJudge", an automated evaluation method for conversational dialogue systems. The method works by first generating dialogues based on self-talk, i.e. dialogue systems talking to itself. Then, it uses human ratings on these dialogues to train an automated judgement model. Our experiments show that AutoJudge correlates well with the human ratings and can be used to automatically evaluate dialogue systems, even in deployed systems. In a second part, we attempt to apply AutoJudge to improve existing systems. This works well for re-ranking a set of candidate utterances. However, our experiments show that AutoJudge cannot be applied as reward for reinforcement learning, although the metric can distinguish good from bad dialogues. We discuss potential reasons, but state here already that this is still an open question for further research.

PDF Abstract WS 2019 PDF WS 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here