Towards a Spectrum of Graph Convolutional Networks

4 May 2018  ·  Mathias Niepert, Alberto Garcia-Duran ·

We present our ongoing work on understanding the limitations of graph convolutional networks (GCNs) as well as our work on generalizations of graph convolutions for representing more complex node attribute dependencies. Based on an analysis of GCNs with the help of the corresponding computation graphs, we propose a generalization of existing GCNs where the aggregation operations are (a) determined by structural properties of the local neighborhood graphs and (b) not restricted to weighted averages. We show that the proposed approach is strictly more expressive while requiring only a modest increase in the number of parameters and computations. We also show that the proposed generalization is identical to standard convolutional layers when applied to regular grid graphs.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here