Adversarial Model for Rotated Indoor Scenes Planning

24 Jun 2020  ·  Xinhan Di, Pengqian Yu, Hong Zhu, Lei Cai, Qiuyan Sheng, Changyu Sun ·

In this paper, we propose an adversarial model for producing furniture layout for interior scene synthesis when the interior room is rotated. The proposed model combines a conditional adversarial network, a rotation module, a mode module, and a rotation discriminator module. As compared with the prior work on scene synthesis, our proposed three modules enhance the ability of auto-layout generation and reduce the mode collapse during the rotation of the interior room. We conduct our experiments on a proposed real-world interior layout dataset that contains 14400 designs from the professional designers. Our numerical results demonstrate that the proposed model yields higher-quality layouts for four types of rooms, including the bedroom, the bathroom, the study room, and the tatami room.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here