Towards Debiasing NLU Models from Unknown Biases

NLU models often exploit biases to achieve high dataset-specific performance without properly learning the intended task. Recently proposed debiasing methods are shown to be effective in mitigating this tendency... However, these methods rely on a major assumption that the types of bias should be known a-priori, which limits their application to many NLU tasks and datasets. In this work, we present the first step to bridge this gap by introducing a self-debiasing framework that prevents models from mainly utilizing biases without knowing them in advance. The proposed framework is general and complementary to the existing debiasing methods. We show that it allows these existing methods to retain the improvement on the challenge datasets (i.e., sets of examples designed to expose models' reliance on biases) without specifically targeting certain biases. Furthermore, the evaluation suggests that applying the framework results in improved overall robustness. read more

PDF Abstract EMNLP 2020 PDF EMNLP 2020 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here