Towards Document-Level Paraphrase Generation with Sentence Rewriting and Reordering

Findings (EMNLP) 2021  ·  Zhe Lin, Yitao Cai, Xiaojun Wan ·

Paraphrase generation is an important task in natural language processing. Previous works focus on sentence-level paraphrase generation, while ignoring document-level paraphrase generation, which is a more challenging and valuable task. In this paper, we explore the task of document-level paraphrase generation for the first time and focus on the inter-sentence diversity by considering sentence rewriting and reordering. We propose CoRPG (Coherence Relationship guided Paraphrase Generation), which leverages graph GRU to encode the coherence relationship graph and get the coherence-aware representation for each sentence, which can be used for re-arranging the multiple (possibly modified) input sentences. We create a pseudo document-level paraphrase dataset for training CoRPG. Automatic evaluation results show CoRPG outperforms several strong baseline models on the BERTScore and diversity scores. Human evaluation also shows our model can generate document paraphrase with more diversity and semantic preservation.

PDF Abstract Findings (EMNLP) 2021 PDF Findings (EMNLP) 2021 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.