Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows

3 Sep 2021  ·  Hamidreza Eivazi, Soledad Le Clainche, Sergio Hoyas, Ricardo Vinuesa ·

We propose a deep probabilistic-neural-network architecture for learning a minimal and near-orthogonal set of non-linear modes from high-fidelity turbulent-flow-field data useful for flow analysis, reduced-order modeling, and flow control. Our approach is based on $\beta$-variational autoencoders ($\beta$-VAEs) and convolutional neural networks (CNNs), which allow us to extract non-linear modes from multi-scale turbulent flows while encouraging the learning of independent latent variables and penalizing the size of the latent vector. Moreover, we introduce an algorithm for ordering VAE-based modes with respect to their contribution to the reconstruction. We apply this method for non-linear mode decomposition of the turbulent flow through a simplified urban environment, where the flow-field data is obtained based on well-resolved large-eddy simulations (LESs). We demonstrate that by constraining the shape of the latent space, it is possible to motivate the orthogonality and extract a set of parsimonious modes sufficient for high-quality reconstruction. Our results show the excellent performance of the method in the reconstruction against linear-theory-based decompositions. Moreover, we compare our method with available AE-based models. We show the ability of our approach in the extraction of near-orthogonal modes that may lead to interpretability.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here