Towards Lower Bounds on the Depth of ReLU Neural Networks

We contribute to a better understanding of the class of functions that can be represented by a neural network with ReLU activations and a given architecture. Using techniques from mixed-integer optimization, polyhedral theory, and tropical geometry, we provide a mathematical counterbalance to the universal approximation theorems which suggest that a single hidden layer is sufficient for learning any function. In particular, we investigate whether the class of exactly representable functions strictly increases by adding more layers (with no restrictions on size). As a by-product of our investigations, we settle an old conjecture about piecewise linear functions by Wang and Sun (2005) in the affirmative. We also present upper bounds on the sizes of neural networks required to represent functions with logarithmic depth.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here