Towards Multimodal In-Context Learning for Vision & Language Models

State-of-the-art Vision-Language Models (VLMs) ground the vision and the language modality primarily via projecting the vision tokens from the encoder to language-like tokens, which are directly fed to the Large Language Model (LLM) decoder. While these models have shown unprecedented performance in many downstream zero-shot tasks (eg image captioning, question answers, etc), still little emphasis has been put on transferring one of the core LLM capability of In-Context Learning (ICL). ICL is the ability of a model to reason about a downstream task with a few examples demonstrations embedded in the prompt. In this work, through extensive evaluations, we find that the state-of-the-art VLMs somewhat lack the ability to follow ICL instructions. In particular, we discover that even models that underwent large-scale mixed modality pre-training and were implicitly guided to make use of interleaved image and text information (intended to consume helpful context from multiple images) under-perform when prompted with few-shot demonstrations (in an ICL way), likely due to their lack of direct ICL instruction tuning. To enhance the ICL abilities of the present VLM, we propose a simple yet surprisingly effective multi-turn curriculum-based learning methodology with effective data mixes, leading up to a significant 21.03% (and 11.3% on average) ICL performance boost over the strongest VLM baselines and a variety of ICL benchmarks. Furthermore, we also contribute new benchmarks for ICL evaluation in VLMs and discuss their advantages over the prior art.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here