Towards Non-Exemplar Semi-Supervised Class-Incremental Learning
Deep neural networks perform remarkably well in close-world scenarios. However, novel classes emerged continually in real applications, making it necessary to learn incrementally. Class-incremental learning (CIL) aims to gradually recognize new classes while maintaining the discriminability of old ones. Existing CIL methods have two limitations: a heavy reliance on preserving old data for forgetting mitigation and the need for vast labeled data for knowledge adaptation. To overcome these issues, we propose a non-exemplar semi-supervised CIL framework with contrastive learning and semi-supervised incremental prototype classifier (Semi-IPC). On the one hand, contrastive learning helps the model learn rich representations, easing the trade-off between learning representations of new classes and forgetting that of old classes. On the other hand, Semi-IPC learns a prototype for each class with unsupervised regularization, enabling the model to incrementally learn from partially labeled new data while maintaining the knowledge of old classes. Experiments on benchmark datasets demonstrate the strong performance of our method: without storing any old samples and only using less than 1% of labels, Semi-IPC outperforms advanced exemplar-based methods. We hope our work offers new insights for future CIL research. The code will be made publicly available.
PDF Abstract