Towards Out-Of-Distribution Generalization: A Survey

31 Aug 2021  ·  Jiashuo Liu, Zheyan Shen, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, Peng Cui ·

Traditional machine learning paradigms are based on the assumption that both training and test data follow the same statistical pattern, which is mathematically referred to as Independent and Identically Distributed ($i.i.d.$). However, in real-world applications, this $i.i.d.$ assumption often fails to hold due to unforeseen distributional shifts, leading to considerable degradation in model performance upon deployment. This observed discrepancy indicates the significance of investigating the Out-of-Distribution (OOD) generalization problem. OOD generalization is an emerging topic of machine learning research that focuses on complex scenarios wherein the distributions of the test data differ from those of the training data. This paper represents the first comprehensive, systematic review of OOD generalization, encompassing a spectrum of aspects from problem definition, methodological development, and evaluation procedures, to the implications and future directions of the field. Our discussion begins with a precise, formal characterization of the OOD generalization problem. Following that, we categorize existing methodologies into three segments: unsupervised representation learning, supervised model learning, and optimization, according to their positions within the overarching learning process. We provide an in-depth discussion on representative methodologies for each category, further elucidating the theoretical links between them. Subsequently, we outline the prevailing benchmark datasets employed in OOD generalization studies. To conclude, we overview the existing body of work in this domain and suggest potential avenues for future research on OOD generalization. A summary of the OOD generalization methodologies surveyed in this paper can be accessed at http://out-of-distribution-generalization.com.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here