Towards Practical Non-Adversarial Distribution Alignment via Variational Bounds

30 Oct 2023  ·  Ziyu Gong, Ben Usman, Han Zhao, David I. Inouye ·

Distribution alignment can be used to learn invariant representations with applications in fairness and robustness. Most prior works resort to adversarial alignment methods but the resulting minimax problems are unstable and challenging to optimize. Non-adversarial likelihood-based approaches either require model invertibility, impose constraints on the latent prior, or lack a generic framework for alignment. To overcome these limitations, we propose a non-adversarial VAE-based alignment method that can be applied to any model pipeline. We develop a set of alignment upper bounds (including a noisy bound) that have VAE-like objectives but with a different perspective. We carefully compare our method to prior VAE-based alignment approaches both theoretically and empirically. Finally, we demonstrate that our novel alignment losses can replace adversarial losses in standard invariant representation learning pipelines without modifying the original architectures -- thereby significantly broadening the applicability of non-adversarial alignment methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here