Towards Federated Learning With Byzantine-Robust Client Weighting

10 Apr 2020  ·  Amit Portnoy, Yoav Tirosh, Danny Hendler ·

Federated Learning(FL) is a distributed machine learning paradigm where data is distributed among clients who collaboratively train a model in a computation process coordinated by a central server. By assigning a weight to each client based on the proportion of data instances it possesses, the rate of convergence to an accurate joint model can be greatly accelerated. Some previous works studied FLin a Byzantine setting, in which a fraction of the clients may send arbitrary or even malicious information regarding their model. However, these works either ignore the issue of data unbalancedness altogether or assume that client weights are apriori known to the server, whereas, in practice, it is likely that weights will be reported to the server by the clients themselves and therefore cannot be relied upon. We address this issue for the first time by proposing a practical weight-truncation-based preprocessing method and demonstrating empirically that it is able to strike a good balance between model quality and Byzantine robustness. We also establish analytically that our method can be applied to a randomly selected sample of client weights.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here