Towards Riemannian Accelerated Gradient Methods

7 Jun 2018  ·  Hongyi Zhang, Suvrit Sra ·

We propose a Riemannian version of Nesterov's Accelerated Gradient algorithm (RAGD), and show that for geodesically smooth and strongly convex problems, within a neighborhood of the minimizer whose radius depends on the condition number as well as the sectional curvature of the manifold, RAGD converges to the minimizer with acceleration. Unlike the algorithm in (Liu et al., 2017) that requires the exact solution to a nonlinear equation which in turn may be intractable, our algorithm is constructive and computationally tractable... Our proof exploits a new estimate sequence and a novel bound on the nonlinear metric distortion, both ideas may be of independent interest. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here