Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization

15 Sep 2023  ·  Jack Foster, Alexandra Brintrup ·

The pursuit of long-term autonomy mandates that robotic agents must continuously adapt to their changing environments and learn to solve new tasks. Continual learning seeks to overcome the challenge of catastrophic forgetting, where learning to solve new tasks causes a model to forget previously learnt information. Prior-based continual learning methods are appealing for robotic applications as they are space efficient and typically do not increase in computational complexity as the number of tasks grows. Despite these desirable properties, prior-based approaches typically fail on important benchmarks and consequently are limited in their potential applications compared to their memory-based counterparts. We introduce Bayesian adaptive moment regularization (BAdam), a novel prior-based method that better constrains parameter growth, leading to lower catastrophic forgetting. Our method boasts a range of desirable properties for robotic applications such as being lightweight and task label-free, converging quickly, and offering calibrated uncertainty that is important for safe real-world deployment. Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments such as Split MNIST and Split FashionMNIST, and does so without relying on task labels or discrete task boundaries.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods