Towards Robust, Locally Linear Deep Networks

Deep networks realize complex mappings that are often understood by their locally linear behavior at or around points of interest. For example, we use the derivative of the mapping with respect to its inputs for sensitivity analysis, or to explain (obtain coordinate relevance for) a prediction. One key challenge is that such derivatives are themselves inherently unstable. In this paper, we propose a new learning problem to encourage deep networks to have stable derivatives over larger regions. While the problem is challenging in general, we focus on networks with piecewise linear activation functions. Our algorithm consists of an inference step that identifies a region around a point where linear approximation is provably stable, and an optimization step to expand such regions. We propose a novel relaxation to scale the algorithm to realistic models. We illustrate our method with residual and recurrent networks on image and sequence datasets.

PDF Abstract ICLR 2019 PDF ICLR 2019 Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here