Lottery Tickets with Nonzero Biases

21 Oct 2021  ·  Jonas Fischer, Advait Gadhikar, Rebekka Burkholz ·

The strong lottery ticket hypothesis holds the promise that pruning randomly initialized deep neural networks could offer a computationally efficient alternative to deep learning with stochastic gradient descent. Common parameter initialization schemes and existence proofs, however, are focused on networks with zero biases, thus foregoing the potential universal approximation property of pruning. To fill this gap, we extend multiple initialization schemes and existence proofs to nonzero biases, including explicit 'looks-linear' approaches for ReLU activation functions. These do not only enable truly orthogonal parameter initialization but also reduce potential pruning errors. In experiments on standard benchmark data, we further highlight the practical benefits of nonzero bias initialization schemes, and present theoretically inspired extensions for state-of-the-art strong lottery ticket pruning.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.