Towards Universality in Multilingual Text Rewriting

30 Jul 2021  ·  Xavier Garcia, Noah Constant, Mandy Guo, Orhan Firat ·

In this work, we take the first steps towards building a universal rewriter: a model capable of rewriting text in any language to exhibit a wide variety of attributes, including styles and languages, while preserving as much of the original semantics as possible. In addition to obtaining state-of-the-art results on unsupervised translation, we also demonstrate the ability to do zero-shot sentiment transfer in non-English languages using only English exemplars for sentiment. We then show that our model is able to modify multiple attributes at once, for example adjusting both language and sentiment jointly. Finally, we show that our model is capable of performing zero-shot formality-sensitive translation.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here