Tractability from overparametrization: The example of the negative perceptron

28 Oct 2021  ·  Andrea Montanari, Yiqiao Zhong, Kangjie Zhou ·

In the negative perceptron problem we are given $n$ data points $({\boldsymbol x}_i,y_i)$, where ${\boldsymbol x}_i$ is a $d$-dimensional vector and $y_i\in\{+1,-1\}$ is a binary label. The data are not linearly separable and hence we content ourselves to find a linear classifier with the largest possible \emph{negative} margin. In other words, we want to find a unit norm vector ${\boldsymbol \theta}$ that maximizes $\min_{i\le n}y_i\langle {\boldsymbol \theta},{\boldsymbol x}_i\rangle$. This is a non-convex optimization problem (it is equivalent to finding a maximum norm vector in a polytope), and we study its typical properties under two random models for the data. We consider the proportional asymptotics in which $n,d\to \infty$ with $n/d\to\delta$, and prove upper and lower bounds on the maximum margin $\kappa_{\text{s}}(\delta)$ or -- equivalently -- on its inverse function $\delta_{\text{s}}(\kappa)$. In other words, $\delta_{\text{s}}(\kappa)$ is the overparametrization threshold: for $n/d\le \delta_{\text{s}}(\kappa)-\varepsilon$ a classifier achieving vanishing training error exists with high probability, while for $n/d\ge \delta_{\text{s}}(\kappa)+\varepsilon$ it does not. Our bounds on $\delta_{\text{s}}(\kappa)$ match to the leading order as $\kappa\to -\infty$. We then analyze a linear programming algorithm to find a solution, and characterize the corresponding threshold $\delta_{\text{lin}}(\kappa)$. We observe a gap between the interpolation threshold $\delta_{\text{s}}(\kappa)$ and the linear programming threshold $\delta_{\text{lin}}(\kappa)$, raising the question of the behavior of other algorithms.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here