Training Convolutional Neural Networks With Hebbian Principal Component Analysis

22 Dec 2020  ·  Gabriele Lagani, Giuseppe Amato, Fabrizio Falchi, Claudio Gennaro ·

Recent work has shown that biologically plausible Hebbian learning can be integrated with backpropagation learning (backprop), when training deep convolutional neural networks. In particular, it has been shown that Hebbian learning can be used for training the lower or the higher layers of a neural network. For instance, Hebbian learning is effective for re-training the higher layers of a pre-trained deep neural network, achieving comparable accuracy w.r.t. SGD, while requiring fewer training epochs, suggesting potential applications for transfer learning. In this paper we build on these results and we further improve Hebbian learning in these settings, by using a nonlinear Hebbian Principal Component Analysis (HPCA) learning rule, in place of the Hebbian Winner Takes All (HWTA) strategy used in previous work. We test this approach in the context of computer vision. In particular, the HPCA rule is used to train Convolutional Neural Networks in order to extract relevant features from the CIFAR-10 image dataset. The HPCA variant that we explore further improves the previous results, motivating further interest towards biologically plausible learning algorithms.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods