Training Deep 3D Convolutional Neural Networks to Extract BSM Physics Parameters Directly from HEP Data: a Proof-of-Concept Study Using Monte Carlo Simulations

21 Nov 2023  ·  S. Dubey, T. E. Browder, S. Kohani, R. Mandal, A. Sibidanov, R. Sinha ·

We report on a novel application of computer vision techniques to extract beyond the Standard Model (BSM) parameters directly from high energy physics (HEP) flavor data. We develop a method of transforming angular and kinematic distributions into "quasi-images" that can be used to train a convolutional neural network to perform regression tasks, similar to fitting. This contrasts with the usual classification functions performed using ML/AI in HEP. As a proof-of-concept, we train a 34-layer Residual Neural Network to regress on these images and determine the Wilson Coefficient $C_{9}$ in MC (Monte Carlo) simulations of $B \rightarrow K^{*}\mu^{+}\mu^{-}$ decays. The technique described here can be generalized and may find applicability across various HEP experiments and elsewhere.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here