Training Deep Neural Networks via Direct Loss Minimization

19 Nov 2015  ·  Yang Song, Alexander G. Schwing, Richard S. Zemel, Raquel Urtasun ·

Supervised training of deep neural nets typically relies on minimizing cross-entropy. However, in many domains, we are interested in performing well on metrics specific to the application. In this paper we propose a direct loss minimization approach to train deep neural networks, which provably minimizes the application-specific loss function. This is often non-trivial, since these functions are neither smooth nor decomposable and thus are not amenable to optimization with standard gradient-based methods. We demonstrate the effectiveness of our approach in the context of maximizing average precision for ranking problems. Towards this goal, we develop a novel dynamic programming algorithm that can efficiently compute the weight updates. Our approach proves superior to a variety of baselines in the context of action classification and object detection, especially in the presence of label noise.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here