Training End-to-end Single Image Generators without GANs

We present AugurOne, a novel approach for training single image generative models. Our approach trains an upscaling neural network using non-affine augmentations of the (single) input image, particularly including non-rigid thin plate spline image warps. The extensive augmentations significantly increase the in-sample distribution for the upsampling network enabling the upscaling of highly variable inputs. A compact latent space is jointly learned allowing for controlled image synthesis. Differently from Single Image GAN, our approach does not require GAN training and takes place in an end-to-end fashion allowing fast and stable training. We experimentally evaluate our method and show that it obtains compelling novel animations of single-image, as well as, state-of-the-art performance on conditional generation tasks e.g. paint-to-image and edges-to-image.

Results in Papers With Code
(↓ scroll down to see all results)