Training Feedforward Neural Networks with Standard Logistic Activations is Feasible

Training feedforward neural networks with standard logistic activations is considered difficult because of the intrinsic properties of these sigmoidal functions. This work aims at showing that these networks can be trained to achieve generalization performance comparable to those based on hyperbolic tangent activations... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet