Transductive Data-Selection Algorithms for Fine-Tuning Neural Machine Translation

Machine Translation models are trained to translate a variety of documents from one language into another. However, models specifically trained for a particular characteristics of the documents tend to perform better. Fine-tuning is a technique for adapting an NMT model to some domain. In this work, we want to use this technique to adapt the model to a given test set. In particular, we are using transductive data selection algorithms which take advantage the information of the test set to retrieve sentences from a larger parallel set. In cases where the model is available at translation time (when the test set is provided), it can be adapted with a small subset of data, thereby achieving better performance than a generic model or a domain-adapted model.

PDF Abstract WS 2019 PDF WS 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here