Transfer Learning Across Patient Variations with Hidden Parameter Markov Decision Processes

1 Dec 2016Taylor KillianGeorge KonidarisFinale Doshi-Velez

Due to physiological variation, patients diagnosed with the same condition may exhibit divergent, but related, responses to the same treatments. Hidden Parameter Markov Decision Processes (HiP-MDPs) tackle this transfer-learning problem by embedding these tasks into a low-dimensional space... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet