Transferable Sparse Adversarial Attack

CVPR 2022  ·  Ziwen He, Wei Wang, Jing Dong, Tieniu Tan ·

Deep neural networks have shown their vulnerability to adversarial attacks. In this paper, we focus on sparse adversarial attack based on the $\ell_0$ norm constraint, which can succeed by only modifying a few pixels of an image. Despite a high attack success rate, prior sparse attack methods achieve a low transferability under the black-box protocol due to overfitting the target model. Therefore, we introduce a generator architecture to alleviate the overfitting issue and thus efficiently craft transferable sparse adversarial examples. Specifically, the generator decouples the sparse perturbation into amplitude and position components. We carefully design a random quantization operator to optimize these two components jointly in an end-to-end way. The experiment shows that our method has improved the transferability by a large margin under a similar sparsity setting compared with state-of-the-art methods. Moreover, our method achieves superior inference speed, 700$\times$ faster than other optimization-based methods. The code is available at https://github.com/shaguopohuaizhe/TSAA.

PDF Abstract CVPR 2022 PDF CVPR 2022 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here