Transform-Based Feature Map Compression for CNN Inference

24 Jun 2021  ·  Yubo Shi, Meiqi Wang, Siyi Chen, Jinghe Wei, Zhongfeng Wang ·

To achieve higher accuracy in machine learning tasks, very deep convolutional neural networks (CNNs) are designed recently. However, the large memory access of deep CNNs will lead to high power consumption. A variety of hardware-friendly compression methods have been proposed to reduce the data transfer bandwidth by exploiting the sparsity of feature maps. Most of them focus on designing a specialized encoding format to increase the compression ratio. Differently, we observe and exploit the sparsity distinction between activations in earlier and later layers to improve the compression ratio. We propose a novel hardware-friendly transform-based method named 1D-Discrete Cosine Transform on Channel dimension with Masks (DCT-CM), which intelligently combines DCT, masks, and a coding format to compress activations. The proposed algorithm achieves an average compression ratio of 2.9x (53% higher than the state-of-the-art transform-based feature map compression works) during inference on ResNet-50 with an 8-bit quantization scheme.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here