Transformers and Cortical Waves: Encoders for Pulling In Context Across Time

25 Jan 2024  ·  Lyle Muller, Patricia S. Churchland, Terrence J. Sejnowski ·

The capabilities of transformer networks such as ChatGPT and other Large Language Models (LLMs) have captured the world's attention. The crucial computational mechanism underlying their performance relies on transforming a complete input sequence - for example, all the words in a sentence into a long "encoding vector" - that allows transformers to learn long-range temporal dependencies in naturalistic sequences. Specifically, "self-attention" applied to this encoding vector enhances temporal context in transformers by computing associations between pairs of words in the input sequence. We suggest that waves of neural activity, traveling across single cortical regions or across multiple regions at the whole-brain scale, could implement a similar encoding principle. By encapsulating recent input history into a single spatial pattern at each moment in time, cortical waves may enable temporal context to be extracted from sequences of sensory inputs, the same computational principle used in transformers.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here