Transformers for Green Semantic Communication: Less Energy, More Semantics

11 Oct 2023  ·  Shubhabrata Mukherjee, Cory Beard, Sejun Song ·

Semantic communication aims to transmit meaningful and effective information, rather than focusing on individual symbols or bits. This results in benefits like reduced latency, bandwidth usage, and higher throughput compared with traditional communication. However, semantic communication poses significant challenges due to the need for universal metrics to benchmark the joint effects of semantic information loss and practical energy consumption. This research presents a novel multi-objective loss function named "Energy-Optimized Semantic Loss" (EOSL), addressing the challenge of balancing semantic information loss and energy consumption. Through comprehensive experiments on transformer models, including CPU and GPU energy usage, it is demonstrated that EOSL-based encoder model selection can save up to 90% of energy while achieving a 44% improvement in semantic similarity performance during inference in this experiment. This work paves the way for energy-efficient neural network selection and the development of greener semantic communication architectures.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here