TREND: Trigger-Enhanced Relation-Extraction Network for Dialogues

The goal of dialogue relation extraction (DRE) is to identify the relation between two entities in a given dialogue. During conversations, speakers may expose their relations to certain entities by explicit or implicit clues, such evidences called "triggers". However, trigger annotations may not be always available for the target data, so it is challenging to leverage such information for enhancing the performance. Therefore, this paper proposes to learn how to identify triggers from the data with trigger annotations and then transfers the trigger-finding capability to other datasets for better performance. The experiments show that the proposed approach is capable of improving relation extraction performance of unseen relations and also demonstrate the transferability of our proposed trigger-finding model across different domains and datasets.

PDF Abstract SIGDIAL (ACL) 2022 PDF SIGDIAL (ACL) 2022 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here