Triplet-Trained Vector Space and Sieve-Based Search Improve Biomedical Concept Normalization

NAACL (BioNLP) 2021  ·  Dongfang Xu, Steven Bethard ·

Concept normalization, the task of linking textual mentions of concepts to concepts in an ontology, is critical for mining and analyzing biomedical texts. We propose a vector-space model for concept normalization, where mentions and concepts are encoded via transformer networks that are trained via a triplet objective with online hard triplet mining. The transformer networks refine existing pre-trained models, and the online triplet mining makes training efficient even with hundreds of thousands of concepts by sampling training triples within each mini-batch. We introduce a variety of strategies for searching with the trained vector-space model, including approaches that incorporate domain-specific synonyms at search time with no model retraining. Across five datasets, our models that are trained only once on their corresponding ontologies are within 3 points of state-of-the-art models that are retrained for each new domain. Our models can also be trained for each domain, achieving new state-of-the-art on multiple datasets.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here