Truncated Log-concave Sampling with Reflective Hamiltonian Monte Carlo

25 Feb 2021  ·  Apostolos Chalkis, Vissarion Fisikopoulos, Marios Papachristou, Elias Tsigaridas ·

We introduce Reflective Hamiltonian Monte Carlo (ReHMC), an HMC-based algorithm, to sample from a log-concave distribution restricted to a convex body. We prove that, starting from a warm start, the walk mixes to a log-concave target distribution $\pi(x) \propto e^{-f(x)}$, where $f$ is $L$-smooth and $m$-strongly-convex, within accuracy $\varepsilon$ after $\widetilde O(\kappa d^2 \ell^2 \log (1 / \varepsilon))$ steps for a well-rounded convex body where $\kappa = L / m$ is the condition number of the negative log-density, $d$ is the dimension, $\ell$ is an upper bound on the number of reflections, and $\varepsilon$ is the accuracy parameter. We also developed an efficient open source implementation of ReHMC and we performed an experimental study on various high-dimensional data-sets. The experiments suggest that ReHMC outperfroms Hit-and-Run and Coordinate-Hit-and-Run regarding the time it needs to produce an independent sample and introduces practical truncated sampling in thousands of dimensions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here