Paper

Spatiotemporal Pattern Mining for Nowcasting Extreme Earthquakes in Southern California

Geoscience and seismology have utilized the most advanced technologies and equipment to monitor seismic events globally from the past few decades. With the enormous amount of data, modern GPU-powered deep learning presents a promising approach to analyze data and discover patterns. In recent years, there are plenty of successful deep learning models for picking seismic waves. However, forecasting extreme earthquakes, which can cause disasters, is still an underdeveloped topic in history. Relevant research in spatiotemporal dynamics mining and forecasting has revealed some successful predictions, a crucial topic in many scientific research fields. Most studies of them have many successful applications of using deep neural networks. In Geology and Earth science studies, earthquake prediction is one of the world's most challenging problems, about which cutting-edge deep learning technologies may help discover some valuable patterns. In this project, we propose a deep learning modeling approach, namely \tseqpre, to mine spatiotemporal patterns from data to nowcast extreme earthquakes by discovering visual dynamics in regional coarse-grained spatial grids over time. In this modeling approach, we use synthetic deep learning neural networks with domain knowledge in geoscience and seismology to exploit earthquake patterns for prediction using convolutional long short-term memory neural networks. Our experiments show a strong correlation between location prediction and magnitude prediction for earthquakes in Southern California. Ablation studies and visualization validate the effectiveness of the proposed modeling method.

Results in Papers With Code
(↓ scroll down to see all results)